Quantcast
Channel: Weaviate Community Forum - Latest posts
Viewing all articles
Browse latest Browse all 3892

Hybrid search with embedding outside the database

$
0
0

Morning

I have a question related to hybrid search. We are testing weaviate locally and doing the embedding out of the database, and pass it the vector to insert and query data. But, because of this, If I fill query parameter in the following code, it raises an error because the database can´t embed the query so I don´t know how I can pass the “keyword” part to the hybrid search

            results = self.collection.query.hybrid(query=None,# No se puede pasar str pq falla al intentar hacer el embedding en la BD y no está configurado
                                                   vector=vector,
                                                   return_metadata=weaviate.classes.query.MetadataQuery(distance=True,score=True, explain_score=True),
                                                   alpha=alpha,
                                                   limit=top_k)

After reading the forum, I have understood that the sparse vector is obtained inside the database. Is any configuration needed? How could we pass the text for the database to obtain the sparse vector in the hybrid search?

Thanks a lot for your help!

  • Weaviate Server Version:
  • Deployment Method:
  • Multi Node? Number of Running Nodes:
  • Client Language and Version:
  • Multitenancy?:

Any additional Information


Viewing all articles
Browse latest Browse all 3892

Latest Images

Trending Articles



Latest Images